Electron Waves Problems and Solutions

 Problem#1

(a) An electron moves with a speed of 4.70 x 106 m/s. What is its de Broglie wavelength? (b) A proton moves with the same speed. Determine its de Broglie wavelength.

Answer:

λ = h/p = h/mv

For an electron, m = 9.11 x 10-31 kg. For a proton m = 1.67 x 10-27 kg.

(a) de Broglie wavelength is

λ = (6.63 x 10-34 J.s)/[(9.11 x 10-31 kg)(4.70 x 106 m/s)]

λ = 1.55 x 10-10 = 0.155 nm

(b) λ is proportional to 1/m,

so λp = λe(me/mp) = (1.55 x 10-10 m)(9.11 x 10-31 kg/1.67 x 10-27 kg) = 8.46 x 10-14 m.

Problem#2

For crystal diffraction experiments (discussed in Section 39.1), wavelengths on the order of 0.20 nm are often appropriate. Find the energy in electron volts for a particle with this wavelength if the particle is (a) a photon; (b) an electron; (c) an alpha particle (m = 6.64 x 10-27 kg).

Answer:

For a photon, E = hc/λ.

For an electron or proton, p = h/λ and E = p2/2m, so E = h2/2mλ2.

(a) E = hc/λ = (6.63 x 10-34 J.s)(3.00 x 108 m/s)/(0.20 x 10-9 m) = 6.2 keV

(b) E = h2/2mλ2 = (6.63 x 10-34 J.s)2/[2(9.11 x 10-31 kg)(0.20 x 10-9 m)] = 6.02 x 10-18 J = 38 eV

(c) Ep = Ee(me/mp) = (38 eV)(9.11 x 10-31 kg/1.67 x 10-27 kg) = 0.021 eV.

Problem#3

An electron has a de Broglie wavelength of 2.80  x 10-10 m. Determine (a) the magnitude of its momentum and (b) its kinetic energy (in joules and in electron volts).

Answer:

1 eV = 1.60 x 10-19 J

(a) λ = h/p → p = h/λ = (6.62 x 10-34 J.s)/(2.80 x 10-10 m) = 2.37 x 10-24 kg.m/s

(b) K = p2/2m = (2.37 x 10-24 kg.m/s)2/[2(9.11 x 10-31 kg)] = 3.08 x 10-18 J = 19.3 eV

Problem#4

Wavelength of an Alpha Particle. An alpha particle (m = 6.64 x 10-27 kg) emitted in the radioactive decay of uranium-238 has an energy of 4.20 MeV. What is its de Broglie wavelength?

Answer:

For a particle with mass, λ = h/p and E = p2/2m.

1 eV = 1.60 x 10-19 J

λ = h/p = h/√(2mE)

λ = (6.62 x 10-34 J.s)/√[2(6.64 x 10-27 kg)(4.20 x 106 eV)(1.60 x 10-19 J/eV)]

λ = 7.02 x 10-15 m

Problem#5

In the Bohr model of the hydrogen atom, what is the de Broglie wavelength for the electron when it is in (a) the n = 1 level and (b) the level? In each case, compare the de Broglie wavelength to the circumference 2πrn of the orbit.

Answer:

The de Bloglie wavelength is λ = h/p = h/mv. In the Bohr model

mvrn = n(h/2π), so

mv = nh/(2πrn)

Combine these two expressions and obtain an equation for λ in term of n. Then

λ = h[2πrn/nh] = 2πrn/n

(a) For n = 1, λ = 2πr1 with r1 = a0 = 0.529 x 10-10 m, so

λ = 2π(0.529 x 10-10 m) = 3.32 x 10-10 m

λ = 2πr1; the de Broglie wavelengt equals the circumference of the orbit.

(b) For n = 4, λ = 2πr4/4.

rn = n2a0, so r4 = 16a0

λ = 2π(16a0)/4 = 4 x (2πa0)

λ = 4 x 3.32 x 10-10 m = 1.33 x 10-9 m

λ = 2π/4; the de Broglie wavelength is 1/n = 1/4 times the circumference of the orbit.

Post a Comment for "Electron Waves Problems and Solutions"