The Scalar Product of Two Vectors Problems and Solutions

 Problem#1

Vector A has a magnitude of 5.00 units, and B has a magnitude of 9.00 units. The two vectors make an angle of 50.0° with each other. Find A.B.

Answer:
A.AB cosθ

A.B = (5.00)(9.00) cos50.00 = 28.9

Problem#2
For any two vectors A and B, show that A.B = AxBx + AyBy + AzBz. (Suggestion: Write A and B in unit vector form and use Equations 7.4 and 7.5.)

Answer:
If, A = Axi + Ayj + Azk and B = Bxi + Byj + Bzk, then

A.B = (Axi + Ayj + Azk).(Bxi + Byj + Bzk)

= AxBx(i.i) + AxBy(i.j) + AxBz(i.k) + AyBx(j.i) + AyBy(j.j) + AyBz(j.k) + AzBx(k.i) + AzBy(k.j) + AzBz(k.k)

A.B = AxBx + AyBy + AzBz

Problem#3
A force F = (6i – 2j) N acts on a particle that undergoes a displacement Δr = (3i + j) m. Find (a) the work done by the force on the particle and (b) the angle between F and Δr.

Answer:
(a) the work done by the force on the particle, given by

W = Fr

W = (6i – 2j).(3i + j) = 18 – 2 = 16 J

(b) the angle between F and Δr is

W = F.Δr cos θ

With
F = [(6 N)2 + (–2 N)2]1/2 = 2√10 N, and

Δr = [(3 m)2 + (–1 m)2]1/2 = √10 m

Then

16 J = (2√10 N)(√10 m) cosθ

cosθ = 16/20 = 0.8

θ = cos-1(0.8) = 36.90

Problem#4
Find the scalar product of the vectors in Figure 1.

Answer:

F.v = Fv cosθ

We must first find the angle between the two vectors. It is:

θ = 3600 – 1180 – 1320 – 90.00 = 20.00

then
F.v = (32.8 N)(0.173 m/s) cos20.00 = 5.33 J/s

Problem#5
Using the definition of the scalar product, find the angles between (a) A = 3i – 2j and B = 4i – 4j; (b) A = –2i + 4j and = 3i – 4j + 2k; (c) A = i – 2j + 2k and B = 3j + 4k.

Answer:
(a) For A = 3i – 2j and B = 4i – 4j;

A = [(3)2 + (–2)2]1/2 = √13

B = [(4)2 + (–4)2]1/2 = 4√2, and

A.B = (3).(4) + (–2)(–4) = 20

then
θ = cos-1(A.B/AB)

θ = cos-1[20/(√13)(4√2)] = 11.30

(b) For A = –2i + 4j and = 3i – 4j + 2k

A = [(–2)2 + (4)2]1/2 = √20

B = [(3)2 + (–4)+ (2)2]1/2 = √29, and

A.B = (–2).(3) + (4)(–4) + 0 = –22

then
θ = cos-1(A.B/AB)

θ = cos-1[22/(√20)(√29)] = 1560

(c) For A = i – 2j + 2k and B = 3j + 4k.

A = [(1)2 + (–2)2 + (2)2]1/2 = 3

B = [(3)2 + (4)2]1/2 = 5, and

A.B = 0 + (–2).(3) + (2)(4) = 2.00

then
θ = cos-1(A.B/AB)

θ = cos-1[2/(3)(5)] = 82.30

Problem#6
For A = 3i + j – kB = –i + 2j + 5k, and C = 2j – 3k, find C.(A x B).

Answer:
A – B = (3i + j – k) – (–i + 2j + 5k) = 4i – j – 6k

then
C.(A – B) = (2j – 3k).(4i – j – 6k)

C.(A – B) = 0 + (–2) + 18 = 16.0 

Post a Comment for "The Scalar Product of Two Vectors Problems and Solutions"