Let f be defined a function from A to B such that for every
element of B their exist a image. Let y be an arbitrary
element of B. Then, f being onto, there exists an element
x $\in$ A such that f(x) = y. Also, f being one-one, this x must
be unique. Thus, for each y $\in$ B, there exists a unique
element x $\in$ A such that f(x) = y. So, we may define a
function,
$f^{-1}$ B → A
So, $f^{-1}$(y) = x ⇔ f(x) = y
The above function $f^{-1}$ is called the inverse of f .
mapping representation: An inverse function reverses the inputs and outputs. |
Note:
- Inverse of bijective function is also bijective function.
- If the inverse of f exist, then f is called an invertible function. i.e., A function f is invertible if and only if f is one-one onto.
Sample Problem 1
Let f : R → R be a function defined by f(x) = 2x - 3. Then, $f^{-1}$ is equal to
(a) x + 3
(b) $\frac{x+3}{2}$
(c) $\frac{x-3}{2}$
(d) None of these
Answer: (b)
Let, y = 2x - 3
⇒ 2x = y + 3
⇒ x = $\frac{y+3}{2}$
So, $f^{-1}$(x) = $\frac{x+3}{2}$
Sample Problem 2
Let f : (4, 6) → (6, 8) be a function defined by f(x) = x + $\left[\frac{x}{2}\right]$, where [$\cdot$] denotes the greatest integer function, then $f^{-1}$(x) is equal to
(a) x + $\left[\frac{x}{2}\right]$
(b) - x - 2
(c) x - 2
(d) $\frac{1}{x+\left[\frac{\pi}{2}\right]}$
Answer: (c)
Since, x $\in$ (4, 6)
So, f(x) = x + $\left[\frac{x}{2}\right]$ = x + 2
Let, f(x) = y
so, y = x + 2
⇒ x = y - 2
So, $f^{-1}$ (x) = x - 2
Sample Problem 3
Let f(x) = $x^2$ - x + 1, x $\geqslant \frac{1}{2}$ then the solution of the
equation f(x) = $f^{-1}$(x) is
(a) x = 1
(b) x = 2
(c) x = $\frac{1}{2}$
(d) None of these
(a) x = 1
(b) x = 2
(c) x = $\frac{1}{2}$
(d) None of these
Answer:
Let, y = $x^2$ - x + 1
⇒ x = $\frac{1 \pm \sqrt{1-4(1-y)}}{2}$, x > $\frac{1}{2}$
So, x = $\frac{1}{2}$ + $\sqrt{y-\frac{3}{4}}$
⇒ $f^{-1}$(x) = $\frac{1}{2}$ + $\sqrt{x-\frac{3}{4}}$
Now, $x^2$ - x + 1 = $\frac{1}{2}$ + $\sqrt{x-\frac{3}{4}}$
⇒ x = 1
Sample Problem 4
Find the inverse for the function f(x) = $\frac{3x+2}{x-1}$
Answer:
First, replace f(x) with y and the function becomes,
y = $\frac{3x+2}{x-1}$
By replacing x with y we get,
x = $\frac{3y+2}{y-1}$
Now, solve y in terms of x :
x (y – 1) = 3y + 2
⇒ xy – x = 3y +2
⇒ xy – 3y = 2 + x
⇒ y (x – 3) = 2 + x
⇒ y = $\frac{x+2}{x-2}$
So, y = f-1(x) = $\frac{x+2}{x-2}$
Contents:
Post a Comment for "Inverse Function"