(a) The I-V characteristic of a semiconductor diode is shown in Fig. 5.1. (i) Use Fig. 5.1 to explain the variation of the resistance

Q#14 (Past Exam Paper – November 2015 Paper 23 Q5)

(a) The I-characteristic of a semiconductor diode is shown in Fig. 5.1.


Fig. 5.1

(i) Use Fig. 5.1 to explain the variation of the resistance of the diode as increases from
zero to 0.8 V. [3]

(ii) Use Fig. 5.1 to determine the resistance of the diode for a current of 4.4 mA. [2]


(b) A cell of e.m.f. 1.2 V and negligible internal resistance is connected in series to a semiconductor diode and a resistor R1, as shown in Fig. 5.2.


Fig. 5.2

A resistor Rof resistance 375 Ω is connected across the cell.
The diode has the characteristic shown in Fig. 5.1. The current supplied by the cell is 7.6 mA.
Calculate

(i) the current in R2, [1]

(ii) the resistance of R1, [2]

(iii) the ratio
power dissipated in the diode
power dissipated in R2
 [2]





Solution:
(a)
(i)
{Note that the gradient of the graph does not give the resistance.
To obtain the resistance, we calculate the ratio V/I for that point.}

Resistance =                                                                  

{Initially, even though there is a p.d. across the semiconductor, the current is zero. This indicates that the resistance is very high at low voltages.}

(Initially,) there is a very high/infinite resistance at low voltages
Then, the resistance decreases as increases


(ii)
{for a current of 4.4 mA,} p.d. from graph 0.50 (V)

{R = V/I}

Resistance = 0.5 / (4.4×10-3) = 110 (114) Ω


(b)
(i)
{The p.d. across each loop is equal to the e.m.f. in the circuit.}

{I = V/R}

current (= 1.2 / 375) = 3.2×10-3 A


(ii)
{I + 3.2 mA = 7.6 mA              giving I = 7.6 – 3.2 = 4.4 mA}

current in diode = 4.4×10-3 A

{For the middle loop in the circuit, R = V / I   
where V is the sum of p.d. across the loop (= e.m.f.),
I is the current in the middle loop
R is the total resistance in the middle loop}

total resistance = 1.2 / (4.4×10-3) = 272.7 (Ω)

{as calculated in (a)(ii), when current = 4.4 mA, resistance of diode = 114 / 113.6 Ω}
{total resistance = resistance of diode + R1}

resistance of R= 272.7 – 113.6 = 160 (159) Ω

OR
{from the graph, when current = 4.4 mA, p.d. across diode = 0.5 V

So, p.d. across R1 = 1.2 – 0.5 = 0.7 V}

p.d. across diode = 0.5 V and p.d. across R= 0.7 V

{R = V/I}

resistance of R= 0.7 / (4.4×10-3) = 160 (159) Ω


(iii)
power = I     or I2              or V2R

{Note that, when calculating the power dissipated, V, I and I should be across the component being considered respectively.}

{using P = VI, ratio = IV in diode / IV in R2}

ratio = (4.4 × 0.5) / (3.2 × 1.2)

OR
{using P = I2R,}

ratio = [(4.4)2×114] / [(3.2)2×375]

OR
{using P = V2/R,          ratio = (0.5/ 114) / (1.2 / 375)}

ratio = [(0.5)2 × 375] / [114 × (1.2)2]

ratio = 0.57

Post a Comment for "(a) The I-V characteristic of a semiconductor diode is shown in Fig. 5.1. (i) Use Fig. 5.1 to explain the variation of the resistance"